Balanced triangulations
نویسندگان
چکیده
Motivated by applications in numerical analysis, we investigate balanced triangulations, i.e. triangulations where all angles are strictly larger than π/6 and strictly smaller than π/2, giving the optimal lower bound for the number of triangles in the case of the square. We also investigate platonic surfaces, where we find for each one its respective optimal bound. In particular, we settle (affirmatively) the open question whether there exist acute triangulations of the regular dodecahedral surface with 12 acute triangles [Itoh and Zamfirescu, Europ. J. Combin. 28 (2007)].
منابع مشابه
Finding a Hamiltonian cycle in the dual graph of Right-Triangulations
In this paper, we describe a method for refining a class of balanced bintree triangulations which maintains a hamiltonian cycle in the dual graph. We also introduce a method for building refinable balanced bintree triangulations using two types of tiles, a diamond tile and a triangular tile.
متن کاملJa n 20 06 BALANCED TRIANGULATIONS OF LATTICE POLYTOPES
Regular triangulations of products of lattice polytopes are constructed with the additional property that the dual graphs of the triangulations are bipartite. Such triangulations are instrumental in deriving lower bounds for the number of real roots of certain sparse polynomial systems by recent results of Soprunova and Sottile (Adv. Math., to appear). Special attention is paid to the cube case.
متن کاملA ug 2 00 5 BALANCED TRIANGULATIONS OF LATTICE POLYTOPES
Regular triangulations of products of lattice polytopes are constructed with the additional property that the dual graphs of the triangulations are bipartite. Special attention is paid to the cube case. Such triangulations are instrumental in deriving lower bunds for the number of real roots of certain sparse polynomial systems by recent results of Soprunova and Sottile [21].
متن کاملSimplicial Moves on Balanced Complexes
We introduce a notion of cross-flips: local moves that transform a balanced (i.e., properly (d + 1)-colored) triangulation of a combinatorial d-manifold into another balanced triangulation. These moves form a natural analog of bistellar flips (also known as Pachner moves). Specifically, we establish the following theorem: any two balanced triangulations of a closed combinatorial d-manifold can ...
متن کاملLMT-skeleton heuristics for several new classes of optimal triangulations
Given a planar point set, we consider three classes of optimal triangulations: (1) the minimum weight triangulation with angular constraints (constraints on the minimum angle and the maximum angle in a triangulation), (2) the angular balanced triangulation which minimizes the sum of the ratios of the maximum angle to the minimum angle for each triangle and (3) the area balanced triangulation wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 313 شماره
صفحات -
تاریخ انتشار 2013